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Highly Consistent Brightness Temperature
Fundamental Climate Data Record

From SSM/I and SSMIS
Shi Liu , Banghai Wu , Cheng-Zhi Zou , and Yu Wang

Abstract— A continuous and consistent fundamental climate
data record (FCDR) from satellite observations is an essential
source for climate research. In this study, a highly consistent
multichannel brightness temperature (TB) FCDR during 1991–
present has been developed using measurements from two Special
Sensor Microwave Imagers (SSM/I) onboard F11 and F13 satel-
lites and one Special Sensor Microwave Imager/Sounder (SSMIS)
onboard F17 satellite from the U.S. Defense Meteorological
Satellite Program (DMSP). The hardware differences between
these instruments were corrected by a combination of several
technologies including the principal component analysis (PCA),
use of the third instrument as an intermediate, and the weighted
average approach which takes into account interchannel covari-
ability and observation matchup issues. After intercalibration,
all imagers were homogenized with SSMIS, which was used as
an observation reference. The mean biases of the recalibrated
TBs for almost all channels between any two instruments are
less than 0.2 K globally with the standard deviations (STDs) less
than 1.2 K. This resulted in a 30-year long continuous and stable
FCDR. Based on this FCDR, a long time series of column water
vapor (CWV) over the global oceans was retrieved. Validation of
this retrieved moisture product against reanalysis data and site
measurements from radiosonde and Global Navigation Satellite
System (GNSS) resulted in reasonably good accuracy, suggesting
that the presented FCDR has high application potential for
climate research.

Index Terms— Fundamental climate data record (FCDR),
intercalibration, Special Sensor Microwave Imager/Sounder
(SSMIS), Special Sensor Microwave Imagers (SSM/I).
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I. INTRODUCTION

THE spaceborne passive microwave (PMW) remote sens-
ing technology has been widely applied to obtain the

physical parameters related to the water and energy cycles
of the Earth system owing to its unique advantage of all-
sky measurements, including during night and with cloud
cover [1], [2], [3], [4]. As outstanding representatives of
PMW radiometers, the Special Sensor Microwave Imager
(SSM/I) and its successor, the Special Sensor Microwave
Imager/Sounder (SSMIS), have been flown on board a set of
polar-orbiting satellites (F08–F19) under the Defense Meteo-
rological Satellite Program (DMSP) from the United States
Department of Defense [5], [6], [7], [8]. Since the 1990s,
measurements from these sensors, i.e., brightness temperatures
(TBs) on multiple microwave channels, have been used to
retrieve a diverse range of atmospheric variables such as
rainfall rate, water vapor content, cloud liquid water [9], [10],
[11], [12], [13], [14], [15], [16], [17], and surface parameters
such as sea surface wind speed, sea surface temperature, and
so on [18], [19], [20], [21], [22].

Although continuous observations of multiple DMSP satel-
lites had spanned for decades, any single satellite among
them lasted for only a few years. For the SSM/I series
to be useful for climate change research, intersensor cali-
bration of multisatellites is required to establish long-term
consistent TB observations, the so-called fundamental climate
data records (FCDRs). Several intercalibration studies for the
SSM/I and SSMIS instruments onboard different satellites had
been conducted in past years. Colton and Poe [23] statistically
compared the monthly averages of TBs from different SSM/I’s
on F08 to F14 satellites. Yang et al. [24] carried out SSM/I
intersensor calibration using a simultaneous conical overpass
(SCO) method. This method searched for “simultaneous”
observation samples defined within a small temporal interval
and spatial distance from different PMW conical sensors. Such
SCOs do not contain diurnal drifting errors between satellite
pairs, as a result, they are ideal for intersatellite calibration to
identify sensor calibration biases. Sapiano et al. [25] developed
a TB FCDR from six SSM/I’s based on a similar SCO tech-
nique, as well as the vicarious cold reference (VCR) method
[26] and double differencing method. Especially, the Global
Precipitation Measurement (GPM) Intersatellite Calibration
(X-CAL) Working Group recalibrated the GPM constellation
radiometers including multiple SSM/I and SSMIS sensors with
various techniques [27]. The group also developed a set of
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homogenized TB data in which the GPM Microwave Imager
was used as a reference. In addition, several other working
groups had also developed long-term TB FCDR from multiple
SSM/I and SSMIS observations, starting with calibration of the
antenna temperature [28], [29] and the raw Earth counts [30],
respectively.

Essentially, intersensor TB biases can be divided into those
from calibration and hardware. Calibration biases are due to
discrepancies in data preprocessing, prelaunch, and on-orbit
correction approaches. On the other hand, hardware differ-
ences include those in channel frequency, Earth incident angle,
bandwidth, and so on [31]. It is noted that research work
as mentioned above emphasized the correction of calibration
biases more than the hardware differences. Hardware differ-
ences incurred for SSM/I and SSMIS in changes of high
frequency channels from 85.5 to 91.655 GHz, as well as reduc-
tion of bandwidth and noise equivalent differential temperature
for all channels [5], [6], [7], [32]. Without adjustment of
hardware differences, the TBs from these sensors are still not
entirely consistent even after recalibration. Furthermore, unre-
moved intersensor TB biases would be transferred to thematic
climate data record (CDR) through parameter retrievals [33],
limiting its applications in climate change research. Several
studies have attempted to homogenize SSM/I with SSMIS over
the polar regions using the SCO matchups by methods such
as simple linear TB corrections for snow depth or sea ice
retrievals [34], [35], [36], [37], [38], [39]. In these studies,
the correction for instruments was usually performed channel
by channel without consideration of the covariability between
channels.

Given the natural variability in surface conditions, it is
physically more sound to jointly adjust the emissivity vector
composed of multiple channels rather than TBs channel-
by-channel since emissivities at typical microwave window
frequencies between 10 and 85 GHz are correlated [40].
Recently, Wu et al. [31] used the principal component analysis
(PCA) method with incorporation of interchannel covariance
to remove the hardware biases between different instruments
after correction of calibration deviations. In their study,
by using the Advanced Microwave Scanning Radiometer-
2 onboard the JAXA’s Global Change Observation Mission
1st-Water satellite as a reference, measurements from the
Microwave Radiation Imager onboard the Chinese Feng Yun-
3B satellite and the Advanced Microwave Scanning Radiome-
ter for Earth Observing System (EOS) equipped on the NASA
Aqua satellite were homogenized. Intersensor biases were less
than 1 K for the three satellites after hardware differences
were removed. However, the TB FCDR in Wu’s study is only
20 years long (since 2002) which is still short for climate
change research. In this study, we attempt to use a similar PCA
technology, as well as several other techniques, to homogenize
SSM/I and SSMIS sensors with a focus on correction of
hardware biases, and then to develop a set of highly consistent
multichannel global TB FCDR for a period of up to 30 years.

To develop TB FCDR with high consistency from the SSM/I
and SSMIS instruments, we only select a subset of satellites
from the DMSP series. Two criteria are used in the satellite
selection. The first is to ensure that the entire observations

Fig. 1. LECT of the ascending orbits for DMSP satellites, except that F08
(dashed line) shows descending LECT.

of the selected sensors have no temporal gap from 1991 to
present. Second, orbital drifts of the chosen satellites should
be minimal and the local observation times, represented by
the local equator crossing times (LECTs), between sensors
should be close to each other to avoid diurnal sampling biases
in TB. We found that a combination of F11, F13, and F17
best meets the above criteria. As shown in Fig. 1 and Table I,
the temporal coverage of F11 was from 1991 to 2000, F13
from 1995 to 2009, and F17 from 2006 to present, respectively.
The operational periods of these satellites allow sufficient
overlaps and observation matchups for intersensor calibration.
Furthermore, they have similar LECTs near 18:00 for the
ascending node, except that F11 drifted for 3 h from 17:00
to 20:00 throughout its lifecycle. Thus, in this study, only
observations of the radiometers on these three satellites are
recalibrated and further combined to construct TB FCDR. For
potential extension of the FCDR to future satellites, the two
earlier SSM/I’s are intercalibrated to the later SSMIS which
is still in orbit. Since SSM/I does not have sounding channels
as in SSMIS, our FCDR development only includes seven
imaging channels consisting of 19.35, 37.0, and 91.655 GHz
(referred to as 19, 37, and 91 GHz hereafter) with both vertical
(V) and horizontal (H) polarizations, and 22.235 GHz (referred
to as 22 GHz) with only vertical polarization.

The rest of this article is organized as follows. Section II
introduces the satellite data and its preprocessing method used
in this study. Section III describes in detail the intercali-
bration between different sensors. Section IV describes the
performance of the developed TB FCDR from multisensor
observations and an example of its application in obtaining
long-term water vapor products. Section V gives a conclusion.

II. DATA AND PREPROCESSING

The GPM Common Calibrated TBs Collocated L1C
datasets from the X-CAL [41] is used in this study, which
includes L1C SSM/I (Version 6) on F11 [42] and F13
[43] and L1C SSMIS (Version 5) on F17 [44]. It is worth
mentioning that the F17 SSMIS data from the X-CAL starts
from March 2008, rather than its launch time in December
2006. The X-CAL calibration involved multiple independent
approaches. Specifically, the SSM/I and SSMIS TBs for
all channels were adjusted via piecewise linear functions
constrained with specified anchor points, reorbitization,
and quality control procedures (Algorithm Theoretical
Basis Document, https://arthurhou.pps.eosdis.nasa.gov/
Documents/L1C_ATBD.pdf). These recalibrated TB data
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TABLE I
MAIN CHARACTERISTICS OF THE PMW IMAGERS WITH IMAGING CHANNELS USED IN THIS STUDY (V AND H REPRESENT

VERTICAL AND HORIZONTAL POLARIZATION, RESPECTIVELY)

were broadly used in geophysical studies. For example,
Sharifnezhad et al. [45] investigated diurnal cycles of the
recalibrated TBs over land on a global scale. Lee et al. [46]
retrieved and studied the long-term Arctic Snow/Ice interface
temperature. Liu et al. [47] calculated near-surface winds,
humidity, and temperature over the ocean to investigate
the relationship between freshwater flux and sea surface
salinity. Although with these studies, however, the hardware
differences in the X-CAL TB still remained. To make the
X-CAL TB a FCDR dataset, these hardware differences
must be removed. This is the primary purpose of our study
here. Note that the SSMIS 37V TB data has been flagged
as “missing” from April 2016 to May 2016 and from
August 2016 to present due to sensor issues. As a result, for
consistency, the climatological analysis for TBs on multiple
channels and relevant retrievals are performed only up to
the end of year 2015 in Section IV, although TBs for other
channels are available up to the present.

For intercalibration purposes, SCO matchups between satel-
lite pairs were collected using criteria similar to Wu et al. [31]
and Yang et al. [48], where spatial distances and temporal
intervals should be less than 5 km and 10 min, respectively.
A clear sky filter [49], [50] was applied over the oceanic
SCOs for alleviating disturbances from clouds to subsequent
PCA procedures. For SCOs over land, no clear sky filter
was applied as clouds have less impact on microwave signals
there, especially at low frequencies. For DMSP polar-orbiting
satellites, SCO pairs can only be collected near the Polar
regions. It should be noted that significant differences exist in
TB values for each channel, and in interchannel covariability
between the polar and the tropical (and also the subtropical)
areas, due to large differences in sensor responses to different
amounts of column water vapor (CWV) and other hydrological
variables. Consequently, the polar SCO samples are unsuitable
for global PCA analysis. To overcome this limitation, another
microwave imager from a non-Sun-synchronous satellite, the
Tropical Rainfall Measuring Mission (TRMM) Microwave
Imager (TMI), is used as a bridge instrument to pair separately
with these three different DMSP sensors in low latitudinal
areas (within 40 ◦N and 40 ◦S) determined by the inclination
angle of TMI. As shown in Table I, TMI and DMSP sensors
(especially SSM/I) have similar frequencies and channels.
This allows TB intercalibrations on all channels. To avoid
potential uncertainties in PCA analysis due to inconsistency of
calibration methods between TMI and the DMSP imagers, the
recalibrated TMI TB dataset (Version 5) also from the X-CAL
[51], rather than the original observation product, is utilized
for the period from 1998 to 2014.

TABLE II
RECLASSIFICATION OF 17 LAND COVER TYPES FROM

IGBP (EXCEPT WATER BODY AND SEA ICE)

In addition to SCOs, the PCA method requires detailed
land cover classifications for better TB reconstruction. Wu
et al. [31] used 17 land cover types from the International
Geosphere–Biosphere Program (IGBP) Land Cover Type
Classification product [52] (see Table II). Here, the IGBP
land cover data were derived from the Moderate Resolution
Imaging Spectroradiometer (MODIS) Land Cover Climate
Modeling Grid (MCD12C1) Version 6 data product [53].
However, we found that several surface types have similar
radiative properties which can be regrouped for simplifica-
tion (see Table II). As an example, the urban and built-up
land types cannot be separated from the grassland type in
our land type regrouping processes owing to their similar
radiative characteristics. Therefore, only four combined land
types including forestry, grassland, ice on land, and the rest
as “others” are used in this study. With ocean and sea ice,
a total of six surface types are defined for each 0.05◦

× 0.05◦

grid globally. In actual applications, only grids with more than
80% of the area falling in the same surface type are selected
for subsequent PCA analysis. Other grids with more complex
land cover are discarded. It should be noted that the MCD12C1
dataset only covers the time period from 2001 to 2020. During
this 20 year of period, only 2.3h of the global grids was
found to incur changes in land cover types in our data quality
examination. This suggested that the land type changes over
time is ignorable during the period of interest in our study.
As a result, the land cover classification in 2001 is used for
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Fig. 2. Time series of the VCR for window channels from (top) 19 GHz V to (bottom) 85/91 GHz H on (left) F11, (middle) F13, and (right) F17. The solid
red lines represent the linear regression trends. Trends with statistical significance in the Mann-Kendall test are highlighted with bold texts. (a), (b) and (c)
19V, (d), (e) and (f) 19H, (g), (h) and (i) 22V, (j), (k) and (l) 37V, (m), (n) and (o) 37H, (p), (q) and (r) 85/91V, and (s), (t) and (u) 85/91H.

the period from 1991 to 2000. For the F17 data after 2021,
land cover type information is not needed as F17 serves as the
reference and requires no recalibration.

The instantaneous fields of view (IFOVs) of SSM/I and
SSMIS are different for different channels with smaller IFOVs
for higher frequencies. The 19-GHz channels of SSMIS
and SSM/I exhibit averaged cross-scan and along-scan sizes
approximately 70 and 42 km, respectively, compared to
15 × 13 km in the 85-/91-GHz channels. These pixel sizes
are determined by the distances between scan points which
are about 25.0 × 12.5 km for low-frequency channels and
12.5 × 12.5 km for high-frequency channels (85/91 GHz)
in L1C datasets. With its 1700-km swath and nearly 90◦

orbital inclination, the SSMIS instrument provides daily global
observations with gaps near the equator. However, seamless
global coverage without gaps can be achieved with three
successive days of observations. The SSM/I have a narrower
swath of 1400 km and similar orbital inclination and it
provides global observations in daily mapping with gaps in
midlatitudes. Global coverage without gaps for the SSM/I
observations can be achieved for data collected over an entire
week. The TMI instrument has a swath width of 760 km and
a spatial resolution of 7 × 5 km to 63 × 37 km, depending on
the channel frequencies (highest resolution at 85 GHz). The
TMI pixel sizes are about 13.7 × 9.2 km for all low-frequency
channels and 13.7 × 4.6 km for the 85-GHz channel in TMI

TB product. It is worth noting that that the TRMM orbit was
boosted from an altitude of 350 to 402.5 km in 2001. This
had caused the resolution of TMI slightly decreased [54].
Given the above different IFOV sizes and for consistency in
intercalibration, we resampled the high-frequency data to make
their pixel sizes align with the low-frequency channels. The
resulting FCDR after intercalibration also maintains the con-
sistent resolution of 25.0 × 12.5 km with the low-frequency
channels.

Before conducting intercalibration among different instru-
ments, possible TB drifts in L1C dataset were first checked and
corrected based on the VCR approach by Ruf [26], Kroodsma
et al. [55], and Xie et al. [56]. In this method, the minimum TB
at cold point over the open ocean at any microwave channel
is always correlated with a fixed sea surface temperature with
low water vapor content. Such a minimum TB is statistically
almost invariant. As such, any large annual variation of the
minimum TB should be considered as radiometer calibration
drift over time. Fig. 2 gives time series of the monthly VCR
TBs on all the seven imaging channels for the three SSM/I
and SSMIS sensors, respectively. It is seen that cooling drifts
occurred on almost all channels on the F13 SSM/I, except for
channel 37H, with the largest drift up to −0.4 K/decade. In
addition, there is a warm drift for the SSM/I channel 37H
and 85H on F11 with a value approximately 0.3 K/decade.
Compared to SSM/I’s, the SSMIS on F17 is more stable,
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Fig. 3. Flow diagram of TB intercalibration between SSM/I on F13 and
SSMIS on F17.

except that the 22V and 91V channels exhibited a small warm
drift. These drifts occurred most likely caused by calibration
errors. In developing satellite-based temperature CDR, Zou
et al. [57] suggested that degradations over time in emissivity
of blackbody warm target, reflector, antenna surface materials,
and instrument calibration nonlinearity could cause calibration
drifts during conversions from raw counts data to radiance
(or TBs) in satellite microwave sounder observations. These
mechanisms could also be applied here to explain the calibra-
tion drifts in observations from the microwave imagers. These
drifts could affect the FCDR consistency and the subsequent
retrieval of atmospheric parameters. For example, the sensi-
tivity of the CWV to TB on the 22V absorbing channel may
reach as high as 2.5 kg m−2 K−1. As a result, a TB drift on
the order of 0.4 K/decade would cause a spurious CWV trend
of 1.0 kg m−2 per decade. As part of preprocessing before
intercalibration, TB drifts on each channel were removed by
subtracting a linear trend from the original TBs [31] in this
study.

III. INTERCALIBRATION

A. Adjustment of F13 SSM/I

We use F17 SSMIS as a reference for the F13 SSM/I
calibration. With this reference, F13 can be intercalibrated
directly using their overlaps. Fig. 3 schematically shows the
intercalibration strategy for the F13 SSM/I. Basically, the
adjustment process is divided into three geographical regions:
the polar (beyond 65 ◦S or 65 ◦N), the tropical and subtropical
(40 ◦S–40 ◦N), and the midlatitudinal (between 40 ◦N and
65 ◦N and between 40 ◦S and 65 ◦S) regions.

In the Polar regions, the SSM/I TBs are converted to
SSMIS-equivalent using the PCA technology [31]. In this
method, the SSMIS TBs in the SSM/I-SSMIS SCO pairs
are first decomposed into seven principal components (PCs)
for their seven channels. But in fact, the first four PCs had
already explained 99.5% of the total variance. Consequently,
PC coefficients representing the relationship between these
four PCs and the F13 SSM/I TBs on all channels in the SCO

Fig. 4. PDF distribution of TB biases for SCO matchups of SSM/I on F13
and SSMIS on F17 (left) before and (right) after intercalibration over the
Polar regions. Figures from the top to the bottom show pdfs with different
land cover types: forestry, grassland, ice on land, other, waterbody, and sea
ice, respectively. The vertical black dash lines indicate the unbiased 0 lines.

pairs are calculated through multiple linear regressions. Then,
the corresponding SSM/I PCs are obtained by applying these
coefficients to all SSM/I observations over the Polar regions.
Finally, these PCs are reconstructed to generate the SSMIS-
equivalent TBs from SSM/I.

Fig. 4 compares the Gaussian-shape probability density
function (pdf) distributions of TB differences between SSM/I
and SSMIS in their SCO pairs before and after the PCA
corrections for all channels and for various surface types over
the Polar regions. Typically, the spreads in biases are larger
for channels with higher frequency. Before adjustment, the
mean biases between the two sensors vary from −3 to 1 K,
depending on channel frequencies and polarizations (left).
These larger biases are mostly caused by hardware differences
in the X-CAL datasets. This can be seen from the SSMIS
91-GHz and SSM/I 85-GHz SCO pairs. These pairs have dif-
ferent channel frequencies and show larger mean biases with
larger bias spread than other channels with the same channel
frequencies. After the PCA correction (right), an unbiased
Gaussian distribution with a mean difference close to 0 K
was obtained for all channels regardless of surface types,
suggesting that the hardware differences between the two
sensors are largely eliminated.

In the tropical and subtropical regions, the same PCA
method is adopted, except that TMI is used as an intermediate
reference for converting F13/SSM/I to F17/SSMIS using their
respective matchups. The pdf distributions of TB differences
between TMI and the two DMSP sensors are similar to that in
the Polar regions (not shown), except that the 22V channel has
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a mean bias peaking far from the center (about −8 K) over
the ocean before correction. This occurred most likely because
the frequency difference in the absorbing channels between
TMI and DMSP sensors (21.3 versus 22.235 GHz) leads
to larger TB differences in response to higher water vapor
content in the tropics. Note that measurements from the water
vapor channel have been involved in many retrieval algorithms,
either to obtain CWV or conversely to remove its effect
from retrievals of other atmospheric and surface variables [4].
Therefore, the importance of consistent observations on the
water vapor channel cannot be overemphasized. Here, the PCA
technique is used to effectively correct the hardware difference
of water vapor channels between instruments, resulting in a
mean bias under 0.2 K. This makes it possible to establish
a continuous and consistent CWV CDR based on a unified
retrieval algorithm later on.

In the midlatitudes, there are no SCOs for any pairs
among SSM/I, SSMIS, and TMI. As such, relationships
between SSM/I and SSMIS obtained above in the polar and
tropical/subtropical regions are modified for midlatitudinal
TB transformation. We test three approaches: 1) extending
the polar conversion relationship to the midlatitude regions;
2) extending the tropical/subtropical conversion relationship
to the midlatitude regions; and 3) extending both the polar
and tropical/subtropical relationships to the midlatitude regions
based on a weighted average of their latitudinal distance to
the conversion point. Fig. 5 shows latitudinal distribution of
the SSM/I TB differences relative to SSMIS during 2009 for
all channels calculated based on these different transformation
relationships over the global ocean and land. It is seen that
the uncorrected SSM/I TB biases in nonpolar regions over the
ocean exceed 1 K in low-frequency channels and are much
larger than 2 K in high-frequency channels. After correction,
TB biases were reduced to near 0 K in both the polar and
tropical/subtropical regions. This is consistent with the pdf
distribution shown in Fig. 4. Over the Southern midlati-
tude oceans, TB biases progressively increase equatorward
from 0 to 1 K for low-frequency channels and decrease to
−1 K for 85-/91-GHz channels when the polar TB conversion
relationship is used to correct the SSM/I observations. Sim-
ilarly, TB biases increase from close to 0-K poleward over
the Southern midlatitude oceans for low-frequency channels
when the tropical correction relationship is used for the
midlatitudes. These phenomena suggest that neither polar nor
tropical/subtropical TB corrections can be directly adopted
in the midlatitudes. In fact, because the TB magnitudes on
each channel and interchannel correlations vary with lati-
tude due to latitudinal-dependency in the physical variables
(such as sea surface temperature) that the channel measures,
the calculated PCs and their corresponding coefficients are
latitude-dependent in the PCA analysis. This is also the reason
for the smaller TB biases in the midlatitude regions at latitudes
closer to the polar region when the polar correction rela-
tionship is used. Similarly, the tropical/subtropical correction
relationship is more applicable in lower latitudes within the
midlatitude regions. Considering these limitations of either
the polar or the tropical/subtropical correction relationships,
we used the distance-weighted averaging approach to correct

TABLE III
MEAN TB BIASES AND STDS BETWEEN F13 SSM/I AND F17 SSMIS

BEFORE (UNCAL) AND AFTER (CAL) INTERCALIBRATION FOR THE
PERIOD FROM OCTOBER 2008 TO SEPTEMBER 2009 OVER

OCEAN AND LAND, RESPECTIVELY

SSM/I TBs over the midlatitude regions for ocean and land,
respectively. Specifically, the corrections at any point in the
midlatitudinal regions are a linear interpolation between those
at the internal boundaries of the polar regions (65 ◦N or
65 ◦S) and external boundaries of the tropical/subtropical
regions (40 ◦N or 40 ◦S) with their latitudinal distances to the
midlatitudinal point as the weighting. The SSM/I TB biases
derived using this approach were reduced to near 0 K in
the Northern midlatitude oceans (see Fig. 5). However, TB
biases in the Southern midlatitudinal oceans are still slightly
larger, especially for the 19V and 89V channels [see Fig. 5(a)
and (k)]. One possible reason for this is the influence of the
predominant strong westerly winds over this region. Because
there are no samples with wind speeds exceeding 8.5 m/s in
the PCA analysis, either from the tropical or polar regions, the
applicability of the correction method would be affected in
the high wind speed regions. In contrast, TB biases over land
were near 0 K after correction in nearly all latitudes except
with a bias about 0.5 K near 40 ◦N. This is likely attributed to
the complex topography of Tibetan Plateau that would exhibit
complicated microwave emission and scattering properties.
Note that the longitudinal length of a fixed-angle rectangle
decreases as the pixel goes from the equator toward the poles.
But, this does not affect the geographic weighting methods
proposed here because the extension of the tropical/subtropical
or polar transformation relationships to the midlatitudes is only
a function of latitudinal distance.

The steps detailed above effectively converted SSM/I TBs
to SSMIS globally. After this conversion, the overall intercal-
ibration results were examined. Fig. 6 illustrates the global
distribution of TB differences between F17 SSMIS and F13
SSM/I, both before and after intercalibration, for all chan-
nels during their one-year overlaps from October 2008 to
September 2009. Before correction [see Fig. 6 (left)], warm
biases in TBs are evident in channels 19V, 91V, and 91H
with values exceeding 2 K over the ocean. After correction,
biases are typically less than 1 K across most areas for all
channels [more than 80% of the global 1◦

× 1◦ grids, Fig. 6
(right)], regardless of the surface types. However, biases over
the polar coastal areas were slightly larger possibly due to
the complex influence of sea ice and land ice on microwave
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Fig. 5. Latitudinal distribution of TB biases without (gray line) and with intercalibration between F13 SSM/I and F17 SSMIS over (left) global cloud-free
ocean and (right) land for all channels. Intercalibration methods include tropical TB correction (green), polar TB correction (blue), and their interpolation
(red). The vertical black dotted lines separate different latitudinal regions. Channels are presented from top to bottom as follows. (a) and (b) 19V, (c) and
(d) 19H, (e) and (f) 22V, (g) and (h) 37V, (i) and (j) 37H, (k) and (l) 85/91V, and (m) and (n) 85/91H.

measurements. Statistical analysis (see Table III) gives a global
mean bias of less than 0.2 K and a standard deviation (STD)
of approximately 1 K for all low-frequency channels over
both land and ocean after intercalibration. This represents a
significant reduction in global mean biases compared to a bias
exceeding 3 K before intercalibration. For the 91H channel,
the mean TB bias was marginally above 0.2 K after intercali-
bration. This was likely caused by asynchronous observations
of certain unfiltered ice clouds (e.g., deep convective clouds)
by the two radiometers, in which high-frequency microwave
signals incur significant scattering effect [50].

B. Adjustment of F11 SSM/I

Since there are no overlaps between F11 and the reference
F17 (see Table I), the adjustment of the former to the latter is

carried out using F13 as the intermediate, which has overlaps
with both of them.

First, by employing the same correction approach as
described in the previous section, the F11 SSM/I TB was
globally adjusted to be consistent with F13 using their SCO
matchups as well as matchups with TMI. To evaluate the
intercalibration performance, Fig. 7 shows the global distri-
bution of TB biases between F13 and F11 SSM/I before
and after intercalibration during their 1999 overlapping period
(one year). Table IV lists their mean biases and STDs for
global ocean and land, respectively, for all channels. Before
intercalibration, channels 19V, 22V, and 37V exhibited large
cold biases. After intercalibration, these biases were reduced
to around zero for their global means. The magnitudes of these
biases are mostly less than 1 K for all channels (more than 90%
of the global 1◦

× 1◦ grids). On average, the mean biases of all
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Fig. 6. Global distribution of averaged TB biases between SSMIS on F17
and SSM/I on F13 (left) before and (right) after intercalibration on 1◦

× 1◦

grids from October 2008 to September 2009 for all imaging channels. From
the top to the bottom: 19V, 19H, 22V, 37V, 37H, 85/91V, and 85/91H. (a) and
(b) 19.35V, (c) and (d) 19.35H, (e) and (f) 22.235V, (g) and (h) 37.0V, (i) and
(j) 37.0H, (k) and (l) 85.5/91.655V, and (m) and (n) 85.5/91.655H.

TABLE IV
SIMILAR TO TABLE III, BUT BETWEEN SSM/I ON F13 AND F11 IN 1999

channels were less than 0.2 K after intercalibration with STD
below 0.7 K (see Table IV). These results are comparable to
or even better than those between F17 SSMIS and the adjusted
F13 SSM/I. Overall, the intercalibration process successfully
makes the F11 measurements consistent with F13.

The adjusted F11 TBs are considered as the F13-equivalent.
The correction relationship and coefficients between the F13
and F17 sensors obtained above are then used to further

Fig. 7. Similar to Fig. 6, but between SSM/I on F13 and F11 in 1999. (a) and
(b) 19.35V, (c) and (d) 19.35H, (e) and (f) 22.235V, (g) and (h) 37.0V, (i) and
(j) 37.0H, (k) and (l) 85.5V, and (m) and (n) 85.5H.

convert the F13-equivalent to F17-equivalent. Note that it is
unfeasible to directly evaluate the consistency between the
adjusted F11 SSM/I and the reference F17 SSMIS since
there were no overlaps between them. Considering that the
correction transformation was effective in adjusting the F13
SSM/I TB in the Tropics using TMI as an intermediate, it is
likely that correction results of F11 SSM/I using a similar
method are also consistent with TBs from F17 SSMIS. Nev-
ertheless, such consistency will need to be validated against
other observations.

IV. FCDR APPLICATION

A direct application of the TB FCDR developed in this
study is to retrieve atmospheric and surface variables to con-
struct long-term thematic CDR for climate change research.
Before developing such a CDR, we first examine the temporal
consistency of the TB FCDRs from the F11, F13, and F17
imagers. Fig. 8 shows time series of the monthly mean TBs
for the three satellites and their difference time series over
rain-free ocean areas for all the analyzed channels. Here, the
monthly mean data were obtained by binning pixel TBs into
1◦

× 1◦ latitude–longitude grid cells and averaging them over
the monthly intervals. An obvious feature in the monthly TB
time series is that all channels show a “two peaks” annual cycle
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Fig. 8. Monthly mean TB time series for (left) F11, F13, and F17 FCDRs over the cloud-free ocean areas between 60 ◦S and 60 ◦N on all imaging channels
(from top to bottom: 19V, 19H, 22V, 37V, 37H, 91V, and 91H). Intersatellite difference time series for corresponding channels are shown in the middle
figures (F13-F11) and the right figures (F17-F13), respectively. Uncertainties in trend calculations represent 95% confidence intervals with autocorrelation
adjustments.

with mean amplitudes from 2 to 4 K, depending on channels.
For any of these channels, the two peaks usually occur in
February and August, corresponding to boreal winter and
summer, respectively. Essentially, these TB cycles in global
ocean means reflect an incomplete cancellation effect between
the Northern and Southern Hemispheres with opposite phases
in the seasonal variations of sea surface temperature and water
vapor [58].

To quantitatively evaluate intersatellite drifts after intercali-
bration, Fig. 8 also listed statistics of means and trends for the
difference time series between the satellite pairs. As shown,
mean biases in the difference time series were below 0.25 K
for all channels and for both satellite pairs between F13 and
F11 and between F17 and F13. This is consistent with statistics
on their means shown in Tables III and IV, although for differ-
ent periods of time. Similar to calibration drifts as discussed
in Section II, the root cause for these biases could be traced
to instrument Level-1 calibration. Zou et al. [57] suggested
that errors in blackbody emissivity, sidelobe effect, and instru-
ment nonlinearity could cause calibration biases in microwave
radiometer observations. Such biases appeared to exist here
in the intersatellite difference time series after removal of
hardware differences between satellite pairs. Trend differences
between F13 and F11 are less than 0.1 K/decade for most
channels which are statistically insignificant. Uncertainties in
trend calculations are much larger than the trends themselves
due to short overlaps. Note that difference trends between
F13 and F17 are sometimes quite large. This is because their
overlaps are too short to give meaningful trend values. In any
case, these trends are also statistically insignificant. The only

difference trend of statistically significant is for channel 85H
between F11 and F13. But, this is not a big concern since
this channel is not used in CWV retrievals later. Overall, the
small and relatively stable intersatellite differences suggested
that diurnal drift effect due to their orbital drifts (see Fig. 1)
can be ignored and there are smooth transitions in the TB time
series during their overlapping periods.

We retrieve the CWV based on the TB FCDRs over the
global oceans using a classical algorithm developed by Lojou
et al. [59], in which five low-frequency channels (19V, 19H,
22V, 37V, and 37H) were used with a log-linear combination.
The Level-2 retrieved CWV is at swath pixel-level for each of
the three satellites covering the period from 1991 to 2016. We
compared the retrieved CWV with equivalent CWV calculated
from radiosonde observations (RAOBs) at standard pressure
levels. A total of 37 radiosonde sites on global islands taken
from the Integrated Global Radiosonde Archive [60] since
December 1991 were selected in the comparison. To minimize
mismatch errors, only pixels of the retrieved CWV closest to
the RAOB sites were selected in their comparisons. However,
if the spatial distances between the selected pixels and the
RAOB sites are larger than 10 km, the CWV data pairs were
discarded without a comparison. Temporal criteria for the
CWV retrievals and RAOB matchups were within 3 h. Fig. 9
shows the density scatter plots and corresponding statistical
results between the retrieved CWV CDRs from different
satellites and the equivalent RAOB measurements. As seen,
the retrieved CWVs are in good agreement with the RAOB
observations with a mean deviation less than 0.3 kg m−2

and a root mean square error (RMSE) of about 3.0 kg m−2,
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Fig. 9. Density Scatter diagram of the satellite retrieved CWV compared
to the equivalent RAOB CWV. The retrieved CWV values are separated into
four groups. (a) From F11, (b) from F13, (c) from F17, and (d) combined
dataset (ALL). The solid red and black lines represent linear fitting of the
data and the diagonal lines, respectively.

regardless of the satellite instrument used in the retrievals.
The overall statistical results are comparable to the accuracy
and precision of CWV retrievals from other studies [61], [62].
Also, the similar statistical results across different instruments
suggested robustness in the retrieval algorithms as well as
consistencies in TBs as their inputs.

The CWV CDR was monthly dataset defined at 0.25◦
×

0.25◦ latitude-longitude grid cells. This was done by binning
the pixel-level CWVs into the defined grid cells and then
averaged over monthly intervals. Fig. 10 shows the gridded
CWV time series over the global oceanic rain-free areas
for different satellites. Intersatellite differences were close to
zero for overlapping satellite pairs, being −0.08 kg m−2 for
F13-F11 and 0.04 kg m−2 for F17-F13 with close to zero
bias drifts of statistically insignificant. These intersatellite
biases were small but not exactly zero after intercalibration
because the intersatellite TB biases were not exactly zero as
shown in Fig. 8. To see impact of intercalibration on the
CWV retrievals, time series before intercalibration were also
shown in Fig. 10. Before intercalibration, intersatellite biases
were up to −0.44 kg m−2 for F13-F11 and 3.98 kg m−2 for
F17-F13, respectively. These large intersatellite differences
before and after intercalibration would significantly affect
long-term trends of the merged CWV time series.

Long-term CWV time series was obtained by merging
CWVs from individual satellite retrievals. Before this merg-
ing, however, residual intersatellite biases must be removed
first. Since intersatellite biases are small and there were
no obvious bias drifts between satellite pairs (see Fig. 10),
only constant global mean biases calculated from overlapping
satellite observations were removed between satellite pairs.
Then, the bias-removed CWVs from individual satellites were
simply averaged together during their overlapping periods on
each grid cell. Fig. 11 depicts the resulting CWV anomaly

Fig. 10. Monthly anomaly time series of the retrieved CWV for satellites
F11, F13, and F17 over the global oceanic rain-free areas from 1992 to
2016 for before and after intercalibration. The thick colored lines represent
CWV after intercalibration, while the colored dashed lines represent CWV
before intercalibration.

time series over the global oceans from 1992 to 2016. We
examine the performance of the obtained CWV time series
by comparing with equivalent CWV computed from the
fifth generation European Centre for Medium-Range Weather
Forecasts (ECMWF) atmospheric reanalysis (ERA5) monthly
gridded (0.25◦) climate reanalysis product [63] which is also
shown in Fig. 11. It is seen that both time series can well
depict the moisture interannual variations with unique annual
cycle of “two peaks,” similar to those in TBs as described
earlier. Also, the satellite retrieved and ERA5 CWVs have high
correlations with a coefficient of 0.95 above 99% significant
level. Their mean biases are less than 0.5 kg m−2 with an
RMSE of 0.16 kg m−2.

In addition to the good agreement in short-term vari-
ability, both the satellite and reanalysis CWV time series
reveal increasing large-scale trends with the former being
0.36 kg m−2 (1.464%) per decade and the latter 0.43 kg m−2

(1.612%) per decade respectively, only 10% difference. These
trend differences were also reflected by their varying differ-
ences over time which have a noticeable shift from negative
to positive values during the F13 era [see Fig. 11 (bottom)].
It is known that the SSM/I and SSMIS observations had been
assimilated into the ERA5 reanalysis system. Variational bias
correction was used to remove satellite drifting biases before
satellite data were assimilated into the reanalysis system [63].
Considering the very different bias correction schemes used in
ERA5 and our satellite retrievals, the CWV trend agreement
between the two datasets is considered remarkable. Overall,
the satellite retrievals and ERA5 exhibited favorable agreement
in both short-term variability and long-term trends, suggesting
both of them can be used for climate change research.

Although favorable agreement was achieved for long-term
trends between the satellite retrieved CWV and ERA5 climate
reanalysis, the comparison is not entirely independent since
EAR5 already assimilated the SSM/I and SSMIS data in it.
To have a complete independent validation, we compare the
satellite retrieved CWV with ground-based observations from
the Global Navigation Satellite System (GNSS) [64], [65] net-
work. We select three oceanic stations for the comparison, with
station names, respectively, referred to as BRMU (32.37 ◦N,
64.70 ◦W), COCO (12.19 ◦S, 96.83 ◦E), and DGAR (7.27 ◦S,
72.37 ◦E). All the three sites have more than 15 years of
overlapping observations with the satellite retrieved CWVs,
allowing a reasonably good evaluation of long-term trends.
Fig. 12 shows comparisons of time series at these three sites.
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Fig. 11. Monthly anomaly time series of the merged satellite CWV (blue
line) and the equivalent CWV from ERA5 reanalysis (red line) over the global
oceanic rain-free areas from 1992 to 2016. Long-term trends of the time series
are shown as colored dash lines. Anomaly difference time series (reanalysis
CWV minus satellite CWV) are shown in the bottom figure with red and
blue representing positive and negative values, respectively. Uncertainties in
trend calculations represent 95% confidence intervals with autocorrelation
adjustments.

Fig. 12. Monthly time series of intercalibrated satellite CWV (red) and the
equivalent GNSS CWV (deep blue) over the three oceanic sites. Long-term
trends are calculated over their overlapping periods. (a) BRMU. (b) COCO.
(c) DGAR.

All stations demonstrate a high level of consistency between
the GNSS and the merged satellite CDR with a trend difference
below 0.08%/decade. The correlation coefficients for their
monthly time series are high, being 0.991, 0.948, and 0.939 for
the BRMU, COCO, and DGAR stations, respectively. These
comparisons demonstrate the merit of intercalibration that has
resulted in CWV trend consistent with overlapping GNSS
observations.

V. CONCLUSION

We developed a continuous and highly consistent TB
FCDR for up to 30 years from December 1991 to December
2021 using measurements by SSM/I instrument onboard F11
and F13 and SSMIS instrument onboard F17. In this process,
the F17 SSMIS observations were used as a reference while
TBs from the SSM/I’s onboard F11 and F13 were converted
to SSMIS-equivalent TB by intersensor bias correction. Biases
removed included a systematic bias drift over time for all
sensors and hardware differences between different sensors.
A VCR approach was used to remove the systematic bias
drifts and a PCA method was used for removing hardware
differences. The PCA approach was applied to separate geo-
graphical regions including the tropics, midlatitudes, and polar

regions for the best effect of bias correction. After intersensor
recalibration, mean biases between any two radiometers have
been reduced to less than 0.2 K with an STD of 1.2 K for
almost all channels over both land and ocean. The small biases
were also relatively stable for all analyzed channels during the
overlapping periods between satellite pairs, suggesting tempo-
ral consistency in the resultant TB FCDRs on pixel-level.

The consistent FCDR was applied to develop a long-term
atmospheric CWV CDR over 25 years from 1992 to 2016.
Comparison with ground-based RAOB observations, indicates
that the CWV CDR has achieved an accuracy of 0.3 kg m−2

with an RMSE of about 3.0 kg m−2 for all the three satellites.
Interannual variability in the CWV time series agreed well
with the ERA5 reanalysis with a high correlation coefficient
of 0.95 and low RMSE of 0.16 kg m−2. The long-term trends
from the CWV CDR also agreed well with those observed
from GNSS stations over the ocean. These results suggest that
the CWV CDR is suitable for climate change research. They
also suggest the application potential of the TB FCDR as the
fundamental observational dataset for climate research.

It should be emphasized that the correction approaches
proposed in this study for hardware differences between
instruments may also be applied for obtaining calibration
consistency and TB FCDR of any PMW radiometers on
other satellites with longer observation periods and higher
sampling frequency. This provides an effective tool for FCDR
development which would further help the CDR development
for understanding long-term changes in the climate system.
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